skip to main content


Search for: All records

Creators/Authors contains: "Vallelonga, Paul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Paleoclimate archives, such as high-resolution ice core records, provide ameans to investigate past climate variability. Until recently, the Law Dome(Dome Summit South site) ice core record remained one of fewmillennial-length high-resolution coastal records in East Antarctica. A newice core drilled in 2017/2018 at Mount Brown South, approximately 1000 kmwest of Law Dome, provides an additional high-resolution record that willlikely span the last millennium in the Indian Ocean sector of EastAntarctica. Here, we compare snow accumulation rates and sea saltconcentrations in the upper portion (∼ 20 m) of three MountBrown South ice cores and an updated Law Dome record over the period1975–2016. Annual sea salt concentrations from the Mount Brown South siterecord preserve a stronger signal for the El Niño–Southern Oscillation(ENSO; austral winter and spring, r = 0.533, p < 0.001, Multivariate El Niño Index) compared to a previously defined Law Dome record of summer sea salt concentrations (November–February, r = 0.398, p = 0.010, SouthernOscillation Index). The Mount Brown South site record and Law Dome recordpreserve inverse signals for the ENSO, possibly due to longitudinalvariability in meridional transport in the southern Indian Ocean, althoughfurther analysis is needed to confirm this. We suggest that ENSO-related seasurface temperature anomalies in the equatorial Pacific drive atmosphericteleconnections in the southern mid-latitudes. These anomalies areassociated with a weakening (strengthening) of regional westerly winds tothe north of Mount Brown South that correspond to years of low (high) seasalt deposition at Mount Brown South during La Niña (El Niño)events. The extended Mount Brown South annual sea salt record (whencomplete) may offer a new proxy record for reconstructions of the ENSO overthe recent millennium, along with improved understanding of regionalatmospheric variability in the southern Indian Ocean, in addition to thatderived from Law Dome. 
    more » « less
  2. null (Ed.)
    Abstract. In 2013 an ice core was recovered from Roosevelt Island, an ice dome between two submarine troughs carved by paleo-ice-streams in the Ross Sea, Antarctica. The ice core is part of the Roosevelt Island Climate Evolution (RICE) project and provides new information about the past configuration of the West Antarctic Ice Sheet (WAIS) and its retreat during the last deglaciation. In this work we present the RICE17 chronology, which establishes the depth–age relationship for the top 754 m of the 763 m core. RICE17 is a composite chronology combining annual layer interpretations for 0–343 m (Winstrup et al., 2019) with new estimates for gas and ice ages based on synchronization of CH4 and δ18Oatm records to corresponding records from the WAIS Divide ice core and by modeling of the gas age–ice age difference. Novel aspects of this work include the following: (1) an automated algorithm for multiproxy stratigraphic synchronization of high-resolution gas records; (2) synchronization using centennial-scale variations in methane for pre-anthropogenic time periods (60–720 m, 1971 CE to 30 ka), a strategy applicable for future ice cores; and (3) the observation of a continuous climate record back to ∼65 ka providing evidence that the Roosevelt Island Ice Dome was a constant feature throughout the last glacial period. 
    more » « less
  3. null (Ed.)
    Abstract. The last glacial period is characterized by a number of millennial climateevents that have been identified in both Greenland and Antarctic ice coresand that are abrupt in Greenland climate records. The mechanisms governingthis climate variability remain a puzzle that requires a precisesynchronization of ice cores from the two hemispheres to be resolved.Previously, Greenland and Antarctic ice cores have been synchronizedprimarily via their common records of gas concentrations or isotopes fromthe trapped air and via cosmogenic isotopes measured on the ice. In thiswork, we apply ice core volcanic proxies and annual layer counting toidentify large volcanic eruptions that have left a signature in bothGreenland and Antarctica. Generally, no tephra is associated with thoseeruptions in the ice cores, so the source of the eruptions cannot beidentified. Instead, we identify and match sequences of volcanic eruptionswith bipolar distribution of sulfate, i.e. unique patterns of volcanicevents separated by the same number of years at the two poles. Using thisapproach, we pinpoint 82 large bipolar volcanic eruptions throughout thesecond half of the last glacial period (12–60 ka). Thisimproved ice core synchronization is applied to determine the bipolarphasing of abrupt climate change events at decadal-scale precision. Inresponse to Greenland abrupt climatic transitions, we find a response in theAntarctic water isotope signals (δ18O and deuterium excess)that is both more immediate and more abrupt than that found with previousgas-based interpolar synchronizations, providing additional support for ourvolcanic framework. On average, the Antarctic bipolar seesaw climateresponse lags the midpoint of Greenland abrupt δ18O transitionsby 122±24 years. The time difference between Antarctic signals indeuterium excess and δ18O, which likewise informs the timeneeded to propagate the signal as described by the theory of the bipolarseesaw but is less sensitive to synchronization errors, suggests anAntarctic δ18O lag behind Greenland of 152±37 years.These estimates are shorter than the 200 years suggested by earliergas-based synchronizations. As before, we find variations in the timing andduration between the response at different sites and for different eventssuggesting an interaction of oceanic and atmospheric teleconnection patternsas well as internal climate variability. 
    more » « less
  4. Abstract. We present a 2700-year annually resolved chronology and snow accumulationhistory for the Roosevelt Island Climate Evolution (RICE) ice core, Ross IceShelf, West Antarctica. The core adds information on past accumulationchanges in an otherwise poorly constrained sector of Antarctica. The timescale was constructed by identifying annual cycles inhigh-resolution impurity records, and it constitutes the top part of theRoosevelt Island Ice Core Chronology 2017 (RICE17). Validation by volcanicand methane matching to the WD2014 chronology from the WAIS Divide ice coreshows that the two timescales are in excellent agreement. In a companionpaper, gas matching to WAIS Divide is used to extend the timescale for thedeeper part of the core in which annual layers cannot be identified. Based on the annually resolved timescale, we produced a record of past snowaccumulation at Roosevelt Island. The accumulation history shows thatRoosevelt Island experienced slightly increasing accumulation rates between700 BCE and 1300 CE, with an average accumulation of 0.25±0.02 mwater equivalent (w.e.) per year. Since 1300 CE, trends in the accumulationrate have been consistently negative, with an acceleration in the rate ofdecline after the mid-17th century. The current accumulation rate atRoosevelt Island is 0.210±0.002 m w.e. yr−1 (average since 1965 CE, ±2σ), and it is rapidly declining with a trend corresponding to0.8 mm yr−2. The decline observed since the mid-1960s is 8 times fasterthan the long-term decreasing trend taking place over the previouscenturies, with decadal mean accumulation rates consistently being belowaverage. Previous research has shown a strong link between Roosevelt Islandaccumulation rates and the location and intensity of the Amundsen Sea Low,which has a significant impact on regional sea-ice extent. The decrease inaccumulation rates at Roosevelt Island may therefore be explained in termsof a recent strengthening of the ASL and the expansion of sea ice in the easternRoss Sea. The start of the rapid decrease in RICE accumulation ratesobserved in 1965 CE may thus mark the onset of significant increases inregional sea-ice extent. 
    more » « less
  5. null (Ed.)
    Abstract. Here we present Antarctic snow accumulation variability at the regional scale over the past 1000 years. A total of 79 ice core snow accumulation records were gathered and assigned to seven geographical regions, separating the high-accumulation coastal zones below 2000 m of elevation from the dry central Antarctic Plateau. The regional composites of annual snow accumulation were evaluated against modelled surface mass balance (SMB) from RACMO2.3p2 and precipitation from ERA-Interim reanalysis. With the exception of the Weddell Sea coast, the low-elevation composites capture the regional precipitation and SMB variability as defined by the models. The central Antarctic sites lack coherency and either do not represent regional precipitation or indicate the model inability to capture relevant precipitation processes in the cold, dry central plateau. Our results show that SMB for the total Antarctic Ice Sheet (including ice shelves) has increased at a rate of 7 ± 0.13 Gt decade−1 since 1800 AD, representing a net reduction in sea level of ∼ 0.02 mm decade−1 since 1800 and ∼ 0.04 mm decade−1 since 1900 AD. The largest contribution is from the Antarctic Peninsula (∼ 75 %) where the annual average SMB during the most recent decade (2001–2010) is 123 ± 44 Gt yr−1 higher than the annual average during the first decade of the 19th century. Only four ice core records cover the full 1000 years, and they suggest a decrease in snow accumulation during this period. However, our study emphasizes the importance of low-elevation coastal zones, which have been under-represented in previous investigations of temporal snow accumulation. 
    more » « less
  6. High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated ice core record from the eastern Ross Sea, named the Roosevelt Island Climate Evolution (RICE) ice core. Comparison of this record with climate reanalysis data for the 1979–2012 interval shows that RICE reliably captures temperature and snow precipitation variability in the region. Trends over the past 2700 years in RICE are shown to be distinct from those in West Antarctica and the western Ross Sea captured by other ice cores. For most of this interval, the eastern Ross Sea was warming (or showing isotopic enrichment for other reasons), with increased snow accumulation and perhaps decreased sea ice concentration. However, West Antarctica cooled and the western Ross Sea showed no significant isotope temperature trend. This pattern here is referred to as the Ross Sea Dipole. Notably, during the Little Ice Age, West Antarctica and the western Ross Sea experienced colder than average temperatures, while the eastern Ross Sea underwent a period of warming or increased isotopic enrichment. From the 17th century onwards, this dipole relationship changed. All three regions show current warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea but increasing in the western Ross Sea. We interpret this pattern as reflecting an increase in sea ice in the eastern Ross Sea with perhaps the establishment of a modern Roosevelt Island polynya as a local moisture source for RICE. 
    more » « less